Principal component analysis, often shortened PCA, is a simple method of linear dimensionality reduction.
It also has a non-linear variant called non-linear principal component analysis.
Useful links
- https://en.wikipedia.org/wiki/Principal_component_analysis
- https://online.stat.psu.edu/stat508/lessons/Lesson07
Citation
If you find this work useful, please cite it as:
@article{yaltirakli,
title = "Principal component analysis",
author = "Yaltirakli, Gokberk",
journal = "gkbrk.com",
year = "2024",
url = "https://www.gkbrk.com/principal-component-analysis"
}
Not using BibTeX? Click here for more citation styles.
IEEE Citation Gokberk Yaltirakli, "Principal component analysis", December, 2024. [Online]. Available: https://www.gkbrk.com/principal-component-analysis. [Accessed Dec. 27, 2024].
APA Style Yaltirakli, G. (2024, December 27). Principal component analysis. https://www.gkbrk.com/principal-component-analysis
Bluebook Style Gokberk Yaltirakli, Principal component analysis, GKBRK.COM (Dec. 27, 2024), https://www.gkbrk.com/principal-component-analysis