.

secp256k1


Reading time: less than 1 minute

secp256k1 is an elliptic curve. It has the formula $y^2 = x^3 + 7$, meaning that any point $(X, Y)$ on the curve needs to satisfy this.

Notably, the secp256k1 curve is used for Bitcoin.

Curve parameters

  • P = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
  • N = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
  • A = 0
  • B = 7

The generator point is as follows

  • $Gx =$ 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798.
  • $Gy =$ 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8.

Useful links

The following pages link here

Citation

If you find this work useful, please cite it as:
@article{yaltirakli,
  title   = "secp256k1",
  author  = "Yaltirakli, Gokberk",
  journal = "gkbrk.com",
  year    = "2025",
  url     = "https://www.gkbrk.com/secp256k1"
}
Not using BibTeX? Click here for more citation styles.
IEEE Citation
Gokberk Yaltirakli, "secp256k1", January, 2025. [Online]. Available: https://www.gkbrk.com/secp256k1. [Accessed Jan. 20, 2025].
APA Style
Yaltirakli, G. (2025, January 20). secp256k1. https://www.gkbrk.com/secp256k1
Bluebook Style
Gokberk Yaltirakli, secp256k1, GKBRK.COM (Jan. 20, 2025), https://www.gkbrk.com/secp256k1

Comments

© 2025 Gokberk Yaltirakli