secp256k1 is an elliptic curve. It has the formula $y^2 = x^3 + 7$, meaning that any point $(X, Y)$ on the curve needs to satisfy this.
Notably, the secp256k1 curve is used for Bitcoin.
Curve parameters
- P =
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
- N =
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
- A =
0
- B =
7
The generator point is as follows
- $Gx =$
0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
. - $Gy =$
0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
.
Useful links
Citation
If you find this work useful, please cite it as:
@article{yaltirakli,
title = "secp256k1",
author = "Yaltirakli, Gokberk",
journal = "gkbrk.com",
year = "2025",
url = "https://www.gkbrk.com/secp256k1"
}
Not using BibTeX? Click here for more citation styles.
IEEE Citation Gokberk Yaltirakli, "secp256k1", January, 2025. [Online]. Available: https://www.gkbrk.com/secp256k1. [Accessed Jan. 20, 2025].
APA Style Yaltirakli, G. (2025, January 20). secp256k1. https://www.gkbrk.com/secp256k1
Bluebook Style Gokberk Yaltirakli, secp256k1, GKBRK.COM (Jan. 20, 2025), https://www.gkbrk.com/secp256k1