.

Estimating Pi with Random Numbers

The Monte Carlo method of estimating Pi
Reading time: less than 1 minute

Without any fancy formulas, it is possible to estimate Pi using random numbers.

We can use the Monte Carlo method to estimate Pi. The idea is to generate random X and Y coordinates and see how many of them fall inside the unit circle.

The probability of a point falling inside the unit circle is equal to the area of the circle divided by the area of the square. The area of the circle is Pi * r^2, and the area of the square is (2r)^2. So the probability is Pi/4.

After generating a bunch of random points, we can estimate Pi by dividing the number of points that fall inside the circle by the total number of points multiplied by 4.

Here’s a demonstration of the Monte Carlo method in action:

See, eventually, the points will start to form a circle. The more points you generate, the more accurate the estimate of Pi will be.

The following pages link here

Citation

If you find this work useful, please cite it as:
@article{yaltirakliwikiestimatingpiwithrandomnumbers,
  title   = "Estimating Pi with Random Numbers",
  author  = "Yaltirakli, Gokberk",
  journal = "gkbrk.com",
  year    = "2025",
  url     = "https://www.gkbrk.com/wiki/estimating-pi-with-random-numbers/"
}
Not using BibTeX? Click here for more citation styles.
IEEE Citation
Gokberk Yaltirakli, "Estimating Pi with Random Numbers", January, 2025. [Online]. Available: https://www.gkbrk.com/wiki/estimating-pi-with-random-numbers/. [Accessed Jan. 20, 2025].
APA Style
Yaltirakli, G. (2025, January 20). Estimating Pi with Random Numbers. https://www.gkbrk.com/wiki/estimating-pi-with-random-numbers/
Bluebook Style
Gokberk Yaltirakli, Estimating Pi with Random Numbers, GKBRK.COM (Jan. 20, 2025), https://www.gkbrk.com/wiki/estimating-pi-with-random-numbers/

Comments

© 2025 Gokberk Yaltirakli